Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Min Shi,* Ju Na Chen and Lian Dong Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in solvent or counterion
R factor $=0.067$
$w R$ factor $=0.181$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexakis(4-nitropyridine \boldsymbol{N}-oxide- κN^{1})cobalt(II) bis(perchlorate)

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, six 4-nitropyridine N -oxide (npo) ligands coordinate to the $\mathrm{Co}^{\mathrm{II}}$ atom via their N-oxide O atoms, resulting in an octahedral CoO_{6} grouping. The $\mathrm{Co}^{\mathrm{II}}$ ion occupies an inversion centre. A short contact of 2.841 (12) \AA is observed between a pyridine N atom and a perchlorate O atom.

Comment

Pyridine N-oxide and its derivatives can act as bridging ligands in polynuclear metal complexes (Watson, 1969) or as monodentate ligands in mononulear complexes (Shi et al., 2005). We report here the synthesis and structure of the title $\mathrm{Co}^{\mathrm{II}}$ complex, (I), incorporating the 4 -nitropyridine N-oxide (npo) ligand.

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Co}^{\mathrm{II}}$ ion assumes a slightly distorted (Table 1) CoO_{6} octahedral coordination geometry from the N-oxide O atoms of six monodentate npo ligands. Atom Co1 occupies an inversion centre.

In the crystal structure of (I), a short $\mathrm{N} 4 \cdots \mathrm{O} 11^{\mathrm{i}}$ [symmetry code: (i) $\left.=\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$ contact of 2.841 (12) \AA is observed between an N-oxide N atom and a perchlorate O atom (sum of van der Waals radii $=3.07 \AA$). A Coulombic attraction between the formal positive charge of N4 and the partial negative charge of O11 may be responsible for this.
(I)

Received 5 September 2005
Accepted 5 October 2005
Online 14 September 2005
$2 \mathrm{ClO}_{4}^{-}$

Experimental

An aqueous solution (10 ml) of 4-nitropyridine N-oxide (0.3375 g , 2.41 mmol) was added to an aqueous solution $(15 \mathrm{ml})$ of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.2932 \mathrm{~g}, 0.801 \mathrm{mmol})$ and the mixture was stirred for a few minutes. Red single crystals of (I) were obtained after the solution was allowed to stand at room temperature for two weeks.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$

$$
D_{x}=1.732 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=1098.44$
Monoclinic, $P 2_{1} / n$
$a=8.4969$ (12) \AA
$b=13.6406$ (19) \AA
$c=18.179$ (3) A
$\beta=91.005(2)^{\circ}$
$V=2106.7(5) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
Cell parameters from 5735 reflections
$\theta=2.6-28.0^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, red
$0.48 \times 0.23 \times 0.21 \mathrm{~mm}$
Data collection
Bruker SMART CCD
diffractometer
4487 independent reflections
4006 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-17 \rightarrow 10$
$l=-23 \rightarrow 21$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0878 P)^{2}\right. \\
& +2.72 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.96 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0063 \text { (12) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 6$	$2.036(2)$	$\mathrm{Co} 1-\mathrm{O} 7$	$2.109(3)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.105(2)$		
$\mathrm{Co} 1-\mathrm{O} 6-\mathrm{N} 4$	$128.39(19)$	$\mathrm{Co} 1-\mathrm{O} 3-\mathrm{N} 5$	$132.5(2)$
$\mathrm{Co} 1-\mathrm{O} 7-\mathrm{N} 6$	$115.01(19)$		

Three of the perchlorate O atoms are disordered over two sites in a 0.601 (13):0.393 (13) ratio (sum constrained to unity). The disordered O atoms were refined isotropically. All H atoms were included in

Figure 1
View of (I), showing 30% displacement ellipsoids for the non-H atoms. The $\mathrm{Cl}-\mathrm{O}$ bonds of the disordered perchlorate O atoms are shown as dashed lines. Primed and unlabelled atoms are generated by the symmetry operation ($1-x, 1-y, 1-z$).
calculated positions and were included in the final cycles of refinement using a riding model $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (No. 20271043) and the Natural Science Foundation of Shandong Province of China (No. Y2002B10) for support.

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5. A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, J.-M., Liu, Z., Lu, J.-J. \& Liu, L.-D. (2005). Acta Cryst. E61, m1133-m1134.
Watson, W. H. (1969). Inog. Chem. 8, 1879-1886.

